MONTREAL, Oct. 18, 2023 /PRNewswire/ -- During a plenary lecture at the 26th World Congress of Neurology, Dr. Anthony Lang, professor of neurology and Jack Clark Chair for Parkinson's Disease Research, University of Toronto, revealed a groundbreaking new model for identifying and studying Parkinson's disease. This new approach will help researchers investigate biological aspects of the disease that may be detectable many years before symptoms begin to show.
The new model outlines three criteria for identifying Parkinson's disease based on distinct, measurable biological factors. Lang explained that this new biological model will allow doctors and researchers to understand Parkinson's in deeper and more complex ways than current clinical models, which are limited to observing symptoms in individual patients.
"We believe this is a radically different way of looking at Parkinson's disease," said Lang. "We've reached a point where, in the era of novel biomarkers … our research needs to be driven by biological determinants of the disease rather than simply limited to a clinical description of the signs and symptoms."
Novel Parkinson's Classification Model Offers New Criteria for Defining Disease
Parkinson's is typically diagnosed by doctors identifying symptoms in a clinical setting. In recent decades, researchers have uncovered biological causes for the disease — including genetic factors and the presence of the synuclein protein in the brain — but until recently, methods to test for these biomarkers in living patients have been largely unavailable. Lang hopes this major step toward a biological model will drive research to investigate these biomarkers and give scientists a more complex understanding of the disease. This in turn may drive development of new diagnosis and treatment methods.
Lang and his colleagues call this new model "SynNeurGe" (pronounced "synergy"), based on the three key biological aspects used to identify the disease and their important interactions:
This new three-part classification aims to account for the many different ways Parkinson's disease presents in patients. For example, based on current, limited testing methods, some patients with genetic forms of Parkinson's disease do not show signs of the synuclein protein in the brain after death. Lang hopes future research will ultimately enable doctors to classify patients based on different categories and types of Parkinson's.
"We can't limit ourselves just to saying Parkinson's is a synuclein disease," said Lang. "If we're ever going to change the research and advance our understanding of all aspects of the disease — understanding the underlying biology and the various mechanisms whereby cells die, understanding the epidemiology of the disease, developing new biomarkers and eventually moving to precision medicine and successful disease modification — we really need a different classification. Our classification is a much broader, all-encompassing way of looking at Parkinson's."
New Model Drives Research in Parkinson's and Other Disease Areas
Additionally, this model will drive research to better distinguish Parkinson's from other diseases that cause deterioration in the brain, enabling scientists to develop more effective ways to diagnose and treat these conditions. For example, the synuclein protein is also involved in conditions like multiple system atrophy (MSA). Lang hopes this new approach will give researchers clearer goals for understanding how synuclein is related to brain deterioration and genetic factors in Parkinson's compared to its role in other, similar diseases. In the future, this may help researchers more accurately distinguish between the early stages of each disease.
Importantly, Lang emphasized that this new biological classification is for research purposes only and is not intended to be applied in clinical care. There are a number of important research questions that need to be answered before this model could be used in routine patient care. For example, researchers need to conduct large prospective studies to better understand the biological factors involved when a patient has a synuclein-positive laboratory result without any clinical symptoms of Parkinson's.
"Parkinson's is the most rapidly increasing neurodegenerative disease. It causes tremendous impact on health care and quality of life. We need treatments that will slow the progression and change the natural course of these neurodegenerative diseases," said Lang. "We have to expand our considerations if we're ever going to see a change in brain health as it [is impacted by] neurodegenerative diseases, and we really believe this is the first step toward getting there."
Visit wcn-neurology.com to learn more about Dr. Lang and all the featured research at this year's WCN.
About the World Congress of Neurology
The World Federation of Neurology's World Congress of Neurology brings together leading neuroscientists and public health experts to turn research into action and emphasize the importance of brain health across the globe. The 26th biennial conference was held in Montreal from October 15 to 19, 2023, and was co-hosted by the Canadian Neurological Society (CNS).
About the World Federation of Neurology
With support from its 123 national Member Societies, the World Federation of Neurology fosters quality neurology and brain health worldwide by promoting neurological education and training, emphasizing under-resourced areas of the world. As a non-state actor in official relations, WFN supports the World Health Organization (WHO) efforts to give everyone an equal chance to live a healthy life. With Member Societies around the globe, WFN unites the world's neurologists to ensure quality neurology and advocate for people to have better brain health. Learn more about the World Federation of Neurology at wfneurology.org.
Media Contact
Ryan Pollock, Yakkety Yak
ryan@yakketyyak.com