BEIJING, Nov. 27, 2023 /PRNewswire/ -- WiMi Hologram Cloud Inc. (NASDAQ: WIMI) ("WiMi" or the "Company"), a leading global Hologram Augmented Reality ("AR") Technology provider, today announced that to fully utilize the advantages of deep learning models and machine learning models, an image classification system that integrates deep learning and machine learning models was developed. The system first uses a deep learning model for feature extraction to transform the original image data into high-level represented features. Then, machine learning models are used to classify these high-level features to obtain the final image classification results. Specifically, WiMi uses a convolutional neural network (CNN) as a deep learning model to extract local features of an image through multiple convolutional and pooling layers, and combines these features through a fully connected layer to obtain a high-level representation of the image. A support vector machine (SVM) is then used as the machine learning model to input these high-level features into the SVM for classification.
SVM is a classical machine learning algorithm that can classify feature vectors based on their linear divisibility. By fusing deep learning and machine learning models, the feature extraction ability of the deep learning model and the classification ability of the machine learning model are fully utilized to improve the accuracy of image classification. Meanwhile, due to the separation of the deep learning model and the machine learning model, either module can be flexibly adapted and replaced for different image classification tasks and datasets to achieve more accurate and efficient image classification tasks.
The deep learning model can learn more abstract and advanced features, while the machine learning model can utilize these features for more accurate classification. WiMi improves the accuracy of image classification by fusing the deep learning and machine learning models, utilizing the powerful feature extraction capability of the deep learning model and the excellent classification capability of the machine learning model, and, at the same time, optimizes the computational process of image classification to improve the efficiency of classification. Deep learning models usually require a large amount of computational resources for training and inference, while machine learning models are relatively lightweight and can perform classification with lower computational resources. Deep learning and machine learning models are fused to build an end-to-end image classification system. The system can receive input images and output classification results. Users can classify images and get the classification results through this system.
The whole system depends on the synergy of all the aspects such as data pre-processing, feature extraction, feature fusion, advanced feature extraction and classifier training
Data pre-processing: Pre-processing the input image data, including image resizing, normalization and other operations, to facilitate subsequent model training and classification.
Deep learning model training: Such as CNN training to learn the high-level feature of the image. We will use existing deep learning model architectures and train on large-scale image datasets to improve the generalization ability of the model.
Machine learning model training: Such as SVM training utilises the features extracted by the deep learning model for classification. We will use the middle layer output of the deep learning model as the input features of the machine learning model and train and optimize it by tuning the model parameters.
Model fusion: Deep learning models and machine learning models will be fused to build a comprehensive image classification system. We will get the final classification results by weighted fusion or integrated learning of the classification results of the two models.
Through the above steps, we will realize an image classification system that fuses deep learning and machine learning models to improve classification accuracy and efficiency, and provide users with an end-to-end image classification solution.
WiMi's image classification system based on deep learning and machine learning models has a wide range of practical application scenarios, and it has a wide range of application prospects in practical application scenarios such as healthcare, intelligent transportation, security monitoring, and autonomous driving. For example, in the field of intelligent transportation, the image classification system integrating deep learning and machine learning models can detect and identify vehicle types, license plate numbers, and traffic signs in the traffic scene in real-time, thus providing real-time traffic information and intelligent traffic management. In the field of autonomous driving, the system can detect and recognize lane lines, traffic signs, and obstacles on the road in real-time, to realize precise control and safe driving of autonomous vehicles.
In the future, WiMi will continue to optimize the image classification system by increasing the dataset, optimizing the network structure, introducing the attention mechanism, combining multiple models, and using migration learning to further improve the system performance and expand its applications in more industries.
About WIMI Hologram Cloud
WIMI Hologram Cloud, Inc. (NASDAQ:WIMI) is a holographic cloud comprehensive technical solution provider that focuses on professional areas including holographic AR automotive HUD software, 3D holographic pulse LiDAR, head-mounted light field holographic equipment, holographic semiconductor, holographic cloud software, holographic car navigation and others. Its services and holographic AR technologies include holographic AR automotive application, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR advertising technology, holographic AR entertainment technology, holographic ARSDK payment, interactive holographic communication and other holographic AR technologies.
Safe Harbor Statements
This press release contains "forward-looking statements" within the Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by terminology such as "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," and similar statements. Statements that are not historical facts, including statements about the Company's beliefs and expectations, are forward-looking statements. Among other things, the business outlook and quotations from management in this press release and the Company's strategic and operational plans contain forward−looking statements. The Company may also make written or oral forward−looking statements in its periodic reports to the US Securities and Exchange Commission ("SEC") on Forms 20−F and 6−K, in its annual report to shareholders, in press releases, and other written materials, and in oral statements made by its officers, directors or employees to third parties. Forward-looking statements involve inherent risks and uncertainties. Several factors could cause actual results to differ materially from those contained in any forward−looking statement, including but not limited to the following: the Company's goals and strategies; the Company's future business development, financial condition, and results of operations; the expected growth of the AR holographic industry; and the Company's expectations regarding demand for and market acceptance of its products and services.
Further information regarding these and other risks is included in the Company's annual report on Form 20-F and the current report on Form 6-K and other documents filed with the SEC. All information provided in this press release is as of the date of this press release. The Company does not undertake any obligation to update any forward-looking statement except as required under applicable laws.